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Abstract

Enantiopurecis-α,β-epoxy acids were prepared via a modified Darzen’s reaction employing the titanium-
mediated bromination–aldolization of chiral acetate thioimide enolate. © 1999 Published by Elsevier Science Ltd.
All rights reserved.

The great importance of chiralα,β-epoxy carboxylic acids as precursors to enantiopureα,β-epoxy lac-
tone andα-amino-β-hydroxy acids make their easy availability desirable.1 While Sharpless epoxidation,2

asymmetric nucleophilic epoxidation3 and modified Darzen’s epoxidation reactions4 are facile appro-
aches to chiral epoxides such as epoxy alcohols andα,β-epoxy esters, progress in the synthesis of
enantiopure epoxy acids and epoxy carboxylate salts has been sporadic.1,5 Although the asymmetric
epoxidation procedure reported by Sharpless has been demonstrated to be a useful approach to chiral
epoxy alcohols needed for the synthesis of enantiomerically pureα,β-epoxy acids, this method does not
generally extend tocis-epoxy acids andγ,δ-unsaturatedα,β-epoxy acids.6 Herein we report an efficient
route to enantiomerically purecis-α,β-epoxy acids andγ,δ-unsaturatedα,β-epoxy carboxylate salts by
a modified Darzen’s reaction. Such a modification involves the use of one-pot bromination–aldolization
of N-acetyloxazolidinethione17 and then converting the resulting bromohydrin aldol adducts to epoxy
acids. The reaction of thioimide1 with TiCl4 (2.0 equiv.), diisopropylethylamine (2.2 equiv.) and bromine
(1.0 equiv.) in dichloromethane at −78°C for 0.5 h led to the bromoacetate titanium enolate. Addition
of representative aldehydes (1.5 equiv.) and reaction at −78°C for 2 h followed by extractive isolation
and silica gel purification gave bromohydrin aldols2a–2d in excellent yields (90%) with complete
asymmetric induction (Scheme 1).8

Can the initial thioimide aldol adducts be directed toward epoxy acids? Exposure of a mixture ofα-
bromo-β-hydroxy thioimide aldols2a (1 mmol) and 10 equiv. of H2O in CH3CN (4 mL) to NEt3 (5
mmol) at 0°C for 4 h, and subsequently adding MeOH (1 mL)/saturated aqueous potassium carbonate (1
mL) and stirring at 25°C led to hydrolysis and epoxide formation to giveα,β-epoxy acid3a in 91% yield
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Scheme 1.

(>99% ee)9 along with recovered oxazolidinethione.10 3a Showed a single set of absorptions in the 400
MHz NMR spectrum suggestive of stereospecific epoxide-formation. Hindered saturated aldol adduct
2b gave a similar result. Enantioselectivity was confirmed by chiral HPLC to be >99% by comparison to
racemic samples.10 The utility of this protocol was examined in the conversion of2c to the corresponding
epoxy acids, which demands very mild conditions for workup due to the high propensity of phenyl
substituted epoxide functionality to rearrange in the presence of acid. Thus, under the workup conditions
described above,3cwas produced only in less than 10% yield. Replacing HCl by oxalic acid remarkably
avoided this problem and increased the yield to 84% (>99% ee).9,10 The appearance of only one set
of signals indicates no concurrent epimerization before cyclization. In the case of bromohydrin aldol
2d, all attempts to isolate the desired epoxy acid led to decomposition or bromohydrin acid4 (96%
yield), depending on the conditions. However, adding 2.5 equiv. of sodium carbonate to a solution of4 in
CH3CN:H2O (3:1, 4 mL) and stirring at 25°C for 10 h led to smooth epoxide formation to give sodium
epoxy carboxylate4d, which was characterized by NMR spectroscopy.10

In conclusion, diastereopuresyn-α-bromo-β-hydroxy thioimide aldols can be conveniently prepared
and serve as precursors to chiralcis-α,β-epoxy acids or sodium epoxy carboxylate.
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